DRY FIRE HYDRANT - DETAILS

CALCULATING REQUIRED LIFT

TOTAL REQUIRED LIFT =

HEAD LOSS IN HYDRANT, + HEAD LOSS IN INTAKE + STATIC LIFT (H) FITTINGS AND GUARD PIPE (HL)

USING 500 GALLONS/MIN.

TOTAL REQUIRED LIFT =
$$7.6' + L \times HL + H = 7.6' + \dots + \dots = \dots$$

USING 250 GALLONS/MIN.

TOTAL REQUIRED LIFT =
$$1.9'$$
 + $L \times HL$ + H = $1.9'$ + $L \times HL$ + H = $1.9'$ + $L \times HL$ + $L \times HL$ + H = $L \times HL$ + $L \times$

ILLIN□IS		
Altitude	Allowable	
(Feet)	Lift (Feet)	
300	22.7	
1,000	22.0	
1,300	21.8	

HEAD LOSS IN FEET (HL)		
Gallons Per Minute	Plastic Pipe	Smooth Steel Pipe
500	2.3	5.3
250	0,6	1,3

 $N\Box TE$: Total required lift value not to exceed value obtained from table of allowable lifts (above).

REFERENCE	
Project .	
Designed .	Date
Checked .	Date
Approved .	Date

STANDARD DWG. NO.

IL-120

SHEET 1 OF 2

DATE 9-29-94